# GENETICS

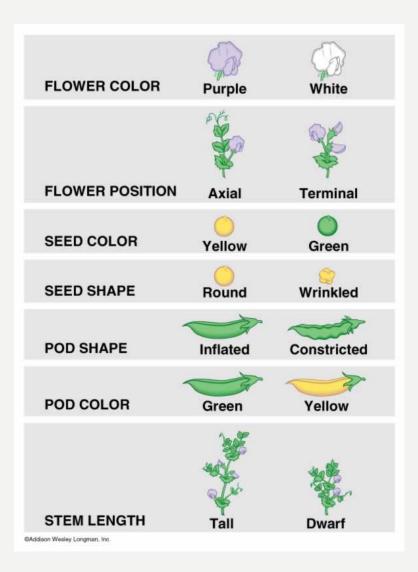
# GREGOR MENDEL



#### FATHER OF GENETICS

- In the mid-nineteenth century, Gregor Mendel, an Austrian monk, carried out important studies of heredity
  - Heredity is \_\_\_\_\_\_

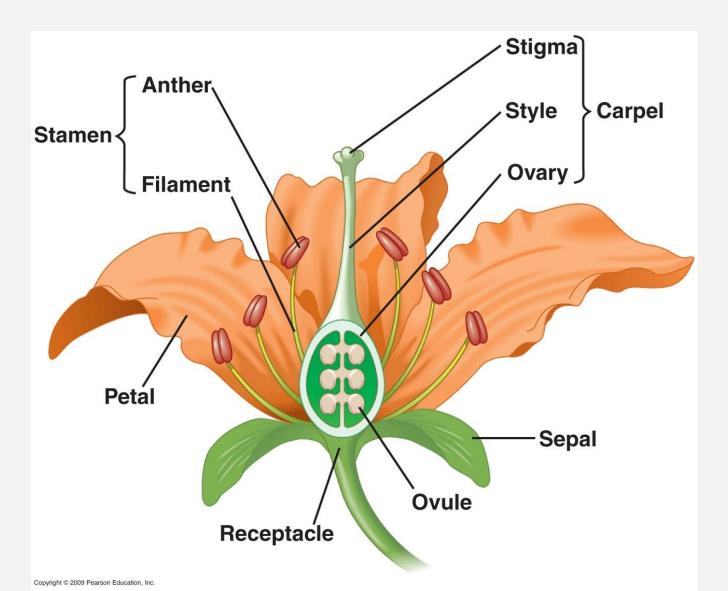
Mendel was the first person to succeed in predicting how traits are transferred from one generation to the next


," the

branch of biology that studies heredity

#### MENDEL'S CONTRIBUTIONS

Worked with pea plants


- Contain \_\_\_\_\_
- Reproduce \_\_\_\_\_
- Traits are easily observed
- \_\_\_\_\_\_ 2 different parents
- Self-pollinate I parent



#### REPRODUCTION IN PLANTS

| • | <ul> <li>The male gamete forms in a pollen grain,</li> </ul> |  |  |  |  |
|---|--------------------------------------------------------------|--|--|--|--|
|   | , the stamen                                                 |  |  |  |  |
|   | The stamen consists of                                       |  |  |  |  |
| • | • The female gamete forms in the female reproductive organ   |  |  |  |  |
|   |                                                              |  |  |  |  |
|   | - The pistil consists of the;                                |  |  |  |  |
|   | •; sticky and receives pollen                                |  |  |  |  |
|   | •; elevates stigma                                           |  |  |  |  |
|   | •; houses ovules                                             |  |  |  |  |
|   |                                                              |  |  |  |  |

## FLORAL STRUCTURE



#### PLANT REPRODUCTION

- Pollination;\_\_\_\_\_\_\_; when the male and female
  - gametes unite to form a zygote
    - -The fertilized zygote will develop into a seed
    - -The ovary will develop into a fruit

#### MENDEL'S EXPERIMENT

| • Mendel removed the male organs from the plants he studied, so he could control which plants were crossed; |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Now he could be sure of the parents in the cross</li> <li>☐ He studied</li> </ul>                  |  |  |
| ☐ He used plants that he had been studying for several generations, and he knew their traits                |  |  |

#### MENDEL'S EXPERIMENTS

# MENDEL'S RESULTS

| <ul> <li>Mendel looked at the P<sub>1</sub> generation (</li> </ul> | $\underline{\hspace{1cm}}$ ) the $F_1$ |
|---------------------------------------------------------------------|----------------------------------------|
| generation () and                                                   | the F <sub>2</sub> generation          |
|                                                                     | ) and studied the results              |
| of many crosses                                                     |                                        |
| • He concluded that each organism has                               |                                        |
| that control each of its traits                                     |                                        |
| -We now know that these are                                         |                                        |
| <u> </u>                                                            |                                        |

## HOMOLOGOUS CHROMOSOMES

An organism's 2 alleles are located on different copies of a chromosome;
 (homologous chromosomes)

#### **GENETIC EXPRESSION**

- Genes
  \_\_\_\_\_\_\_\_ (nucleotide sequences)
  \_\_\_\_\_\_\_ that can pass from one generation to the next
  Alleles
  \_\_\_\_\_\_\_ that can pass from one generation to the next
  - Each parent passes on one allele for each trait to the offspring (homologous chromosomes)

# EXPRESSION OF PHYSICAL CHARACTERISTICS

- - Written first; use a capital letter

# EXPRESSION OF PHYSICAL CHARACTERISTICS CONT.

- - Both alleles must be recessive in order for the trait to be recessive
  - as dominant) (same letter

#### **DIMPLES**

- □ Dimples dominant (D)
- □ No Dimples recessive (d)
- ☐ Mom passes on gene for dimples
- □ Dad passes on gene for no dimples
- In order for offspring to not have dimples, both parents must pass on allele for no dimples (dd)

# Dimples No Dimples

#### PHYSICAL CHARACTERISTICS

- Phenotype physical expression of traits;
   You cannot necessarily tell the \_\_\_\_\_\_ by looking at the \_\_\_\_\_
   Two organisms can look alike,
  - Ex. Dd, DD; both have dimples

## HOMOZYGOUS & HETEROZYGOUS

- Homozygous
  - \_
  - Ex. DD or dd
- Heterozygous
  - \_
  - -Ex. Dd

# **PUNNETT SQUARE**

• Used to express the possible combinations for a certain trait an offspring may inherit from the parents

•

• Is a predicted or expected ratio

#### **PROBABILITY**

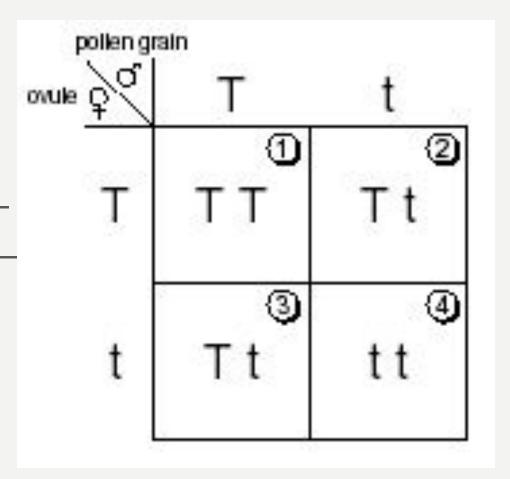
In reality you don't get the exact ratio of results shown in the square, as \_\_\_\_\_\_
The probability that an event will occur can be determined \_\_\_\_\_\_

#### PRODUCT RULE

• Ex. Possibility of big nose is ½

Possibility of big ears is 1/2

1/4 of the time offspring are predicted to have


big ears and a big nose (multiply)

## MONOHYBRID CROSS

• Studies one

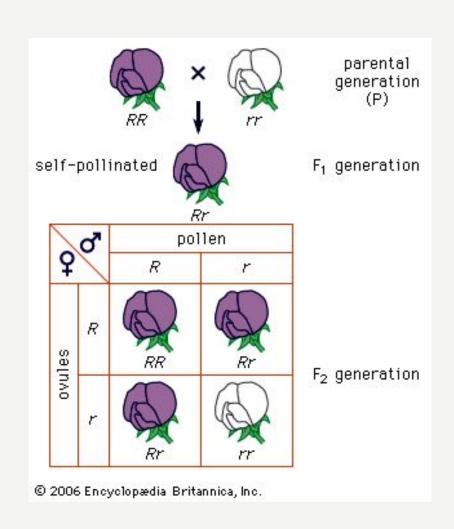
characteristic

• Organisms \_\_\_\_\_



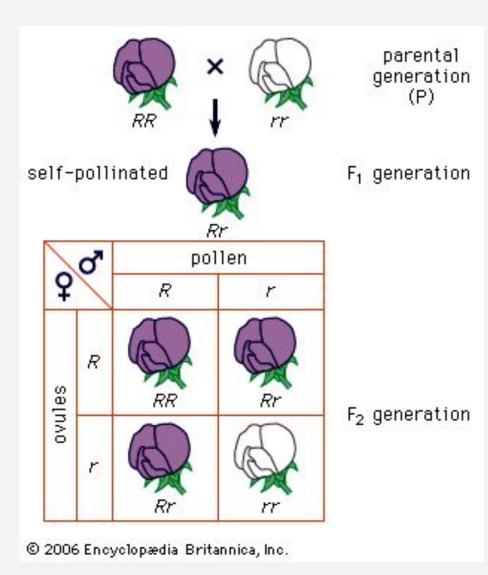
#### PHENOTYPE AND THE ENVIRONMENT

• For example, \_\_\_\_\_ can affect the expression of


• Room temperature some flowers bloom red, at higher temperatures the flowers bloom white

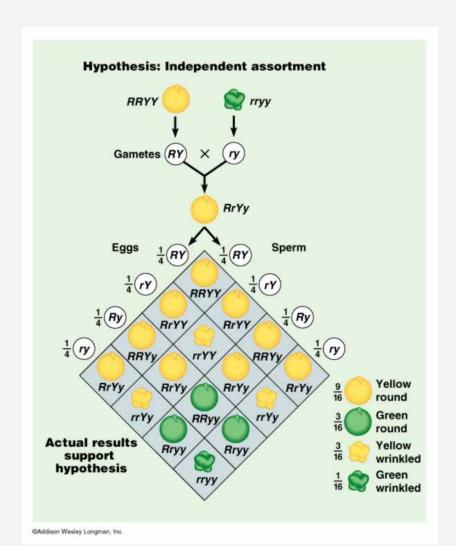
genes

#### PRINCIPLE OF DOMINANCE


 Some forms of a gene or trait are dominant over other traits

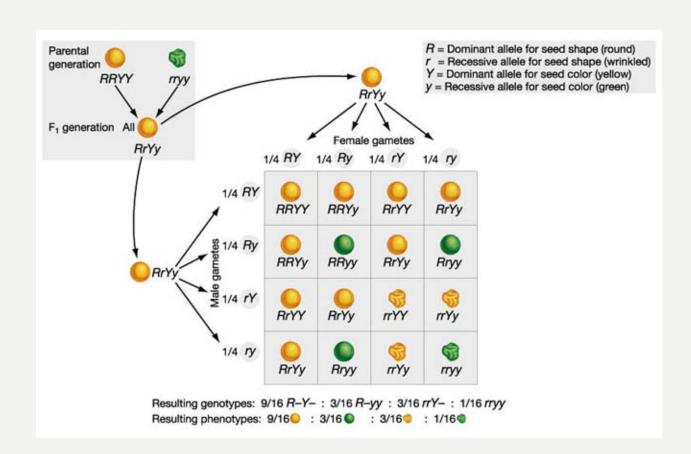
| • |  |  |
|---|--|--|
|   |  |  |
| 1 |  |  |
|   |  |  |
|   |  |  |
|   |  |  |




#### PRINCIPLE OF SEGREGATION

|   | When sex cells are forming,                             |  |  |  |
|---|---------------------------------------------------------|--|--|--|
|   |                                                         |  |  |  |
|   |                                                         |  |  |  |
|   |                                                         |  |  |  |
|   | When crossing plants from FI generation                 |  |  |  |
|   | A predictable ratio of phenotypes appear                |  |  |  |
|   | For every I recessive plant there are 3 dominant plants |  |  |  |
|   | Ratio can only occur if                                 |  |  |  |
| _ |                                                         |  |  |  |




## DIHYBRID CROSS

• Crosses that \_\_\_\_\_



# PRINCIPLE OF INDEPENDENT ASSORTMENT

Each pair of alleles segregates \_\_\_\_\_

